Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase.
نویسندگان
چکیده
Sirtuins are homologues of the yeast transcriptional repressor Sir2p and are conserved from bacteria to humans. We report that human SIRT4 is localized to the mitochondria. SIRT4 is a matrix protein and becomes cleaved at amino acid 28 after import into mitochondria. Mass spectrometry analysis of proteins that coimmunoprecipitate with SIRT4 identified insulindegrading enzyme and the ADP/ATP carrier proteins, ANT2 and ANT3. SIRT4 exhibits no histone deacetylase activity but functions as an efficient ADP-ribosyltransferase on histones and bovine serum albumin. SIRT4 is expressed in islets of Langerhans and colocalizes with insulin-expressing beta cells. Depletion of SIRT4 from insulin-producing INS-1E cells results in increased insulin secretion in response to glucose. These observations define a new role for mitochondrial SIRT4 in the regulation of insulin secretion.
منابع مشابه
Inhibition of glutamate dehydrogenase and insulin secretion by KHG26377 does not involve ADP-ribosylation by SIRT4 or deacetylation by SIRT3.
We investigated the mechanisms involved in KHG26377 regulation of glutamate dehydrogenase (GDH) activity, focusing on the roles of SIRT4 and SIRT3. Intraperitoneal injection of mice with KHG26377 reduced GDH activity with concomitant repression of glucose-induced insulin secretion. Consistent with their known functions, SIRT4 ribosylated GDH and reduced its activity, and SIRT3 deacetylated GDH,...
متن کاملSIRT4 Inhibits Glutamate Dehydrogenase and Opposes the Effects of Calorie Restriction in Pancreatic β Cells
Sir2 is an NAD-dependent deacetylase that connects metabolism with longevity in yeast, flies, and worms. Mammals have seven Sir2 homologs (SIRT1-7). We show that SIRT4 is a mitochondrial enzyme that uses NAD to ADP-ribosylate and downregulate glutamate dehydrogenase (GDH) activity. GDH is known to promote the metabolism of glutamate and glutamine, generating ATP, which promotes insulin secretio...
متن کاملInsulin Secretion: SIRT4 Gets in on the Act
Despite their initial characterization as histone deacetylases controlling transcription, sirtuins also turn out to be critical regulators of metabolism. In this issue of Cell, Haigis et al. (2006) demonstrate that the mammalian Sir2 homolog SIRT4 acts in the mitochondria of pancreatic beta cells to repress the activity of glutamate dehydrogenase through ADP-ribosylation. In this way, SIRT4 dow...
متن کاملMicroRNA-15b regulates mitochondrial ROS production and the senescence-associated secretory phenotype through sirtuin 4/SIRT4
Mammalian sirtuins are involved in the control of metabolism and life-span regulation. Here, we link the mitochondrial sirtuin SIRT4 with cellular senescence, skin aging, and mitochondrial dysfunction. SIRT4 expression significantly increased in human dermal fibroblasts undergoing replicative or stress-induced senescence triggered by UVB or gamma-irradiation. In-vivo, SIRT4 mRNA levels were upr...
متن کاملThe Complex Mechanism of Glutamate Dehydrogenase in Insulin Secretion
Leucine is the only physiologic amino acid that can stimulate insulin release by itself, and a great deal of evidence suggests that leucine does this by allosterically activating glutamate dehydrogenase (GDH). GDH catalyzes the oxidative deamination of endogenous glutamate, which is present at a high concentration in the pancreatic b-cell. Studies that support this role of leucine include the f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 282 46 شماره
صفحات -
تاریخ انتشار 2007